
This%work%was%performed%under%the%auspices%of%the%U.S.%Department%
of%Energy%by%Lawrence%Livermore%Na?onal%Laboratory%under%Contract%
DEBAC52B07NA27344.%Lawrence%Livermore%Na?onal%Security,%LLC Release Number:

This%work%was%performed%under%the%auspices%of%the%U.S.%Department%
of%Energy%by%Lawrence%Livermore%Na?onal%Laboratory%under%Contract%
DEBAC52B07NA27344.%Lawrence%Livermore%Na?onal%Security,%LLC Release Number:

David Jefferson
Lawrence Livermore National Laboratory

2014

Parallel Discrete
Event Simulation

Course #12

LLNL#PRES#653678

1 PDES Course Slides Lecture 12.key - May 5, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Reprise

2

2 PDES Course Slides Lecture 12.key - May 5, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

And now, for something completely
different …

3

Reverse ComputationReverse Computation

Reverse Computation

It’s different because we will be talking about sequential computation, programming languages, source-to source transformations, etc., without much talk about
synchronization.

3 PDES Course Slides Lecture 12.key - May 5, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

“Factoring” an event method

4

E+ E-

E*

(args) () { }≡≡;

E+(args) ; () ≡≡ E(args)

E+(args)

E-()E(args)

E*()

Original!
Method

Forward!
Method

Reverse!
Method

Commit!
Method

The fundamental idea is to take all of the event methods E(args) in a parallel discrete event simulation and “factor” each of them into three parts: E+(args), E-(), and E*().!!
E+(args) is executed in place of E(args) in the simulation and is instrumented to save all information destroyed by the forward execution of E(args) so as to preserve the option after
E(args) completes of restoring the initial state of an object before it executed.!!
E
-
() uses the information stored by E+() and also the object’s state information to exactly reconstruct the state before E+() executed. It in effect reverses all of the side effect of E+

() and exactly accomplishes rollback of the event.!!
E*() is executed at the time event E(args) is committed, and deals with actions specified in E+(args) that really cannot be rolled back, such as output, or the freeing of dynamically
allocated storage.!!
The two equations boxed in red are properties that the three methods must satisfy.!!
The first one says the E

-
() really does reverse all of the side effects of E+(args), and does nothing else, so that executing E+(args) followed by E

-
() is a no-op.!!

The second one says that executing E+(args) followed by E*() is equivalent to executing the original method E(args).!!
Since every time E+(args) is executed it will either be rolled back or committed, then either E

-
() or E*() will be executed after it and the net effect will either be a no-op (in the case

of a rollback) or it will be as if E(args) executed (in the case of commitment).!!
4 PDES Course Slides Lecture 12.key - May 5, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Two auxiliary collections enable
reverse computation

5

push() pop()

push() pop()

LIFO stack used to
hold data needed for
rollback

S:
FIFO queue (with virtual
timestamps) used to hold
data needed for commitment

Q:

In factoring an event method we generally use two auxiliary data structures. One, which we call S in these slides, is a LIFO stack that is used to hold data needed

for rollback. The LIFO structure is natural, because the data that we need for executing E-() is need in the reverse order of the order in which it was put in during
forward execution of E+().!!
The other we are calling Q, and it is a FIFO queue of data to be saved for E*() at commitment time. Since the things done at commitment time (e.g. output) have to
be done in the same order as specified during execution of E+(), it is natural for a FIFO queue to be employed.!!
The “push”, “pop” and later “top” and “front” terminology are from the C++ STL.

5 PDES Course Slides Lecture 12.key - May 5, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Minimize saved state

• Goal: minimize the amount of data saved and
restored to conserve time and space!

• More generally, minimize all overheads introduced
in E+(args) assuming that E+() is called many
more times than E-()!

• “Perfect reversibility”: a segment of code is
perfectly reversible of it can reversed with no saved
state at all.

6

Perfect or near perfect reversibility is very useful when achievable. When data has to be stored on the Stack it involves storage allocation, data copying in memory,
and calls to both push() and pop() for each data item stored — which is quite a bit of overhead. Thus we really want to minimize the data that has to be stored to
enable rollback, even at the expense of a large investment in program analysis at compile time.

6 PDES Course Slides Lecture 12.key - May 5, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Need for automated generation of forward,
reverse and commit methods

• Requiring programmers to write E+(args), E-(), and
E*() in addition to E(args) is a prohibitive software
engineering burden.!
• It essentially triples the work!
• It is extremely taxing mentally!
• It is extremely difficult to debug and maintain.!
• Turns ordinary bugs into Heisenbugs!

• For reverse computation to be feasible it is essential that
the programmer have to write no more code than
E(args)!

• As a practical matter E+(args), E-(), and E*() must be
automatically generated !

7

LLNL has a project called Backstroke that is intended to automatically generate reverse code for almost any code written in C++.

7 PDES Course Slides Lecture 12.key - May 5, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Backstroke

8

8 PDES Course Slides Lecture 12.key - May 5, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Backstroke as a ROSE application

9

ROSE is source-to-source compiler infrastructure developed at LLNL
!
Backstroke works inside ROSE and transforms the code (in AST form),
factoring event methods into forward, reverse, and commit methods.

This is a diagram of the workflow in ROSE, a general source-to-source program transformation system and compiler. Backstroke is the component in red that uses
ROSE’s powerful program analysis tools and adds forward, reverse and commit routines for all event methods in a ROSS-compatible simulation. !!
It is not absolutely essential to construct a reverse code generator this way. You could go directly from the revised Abstract Syntax Tree to executable binary. (The
LORAIN project at RPI, based on LLVM, is structured that way.) But by going back through source code, the programmer can see what the forward, reverse, and
commit methods look like, and perhaps learn how to improve their performance.

9 PDES Course Slides Lecture 12.key - May 5, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Backstroke applies to most of C++
• We intend to support almost the entire C++ language,

including!
• assignment, initialization!
• sequential control constructs ;, if, switch, for, while, return, continue,
break, goto!
• scalars, structs, arrays, classes and class types!
• methods, functions, inheritance, virtual functions, recursion!
• casts!
• constructors, copy constructors, destructors!
• many STL container classes!
• dynamic storage allocation, deallocation!
• templates!

• With restricted support of
• arbitrary pointer structures!

• But excluding
• exceptions, throws!
• function pointers!
• threads

10

Some parts of the C++ language are straightforward to support. Some are quite tricky. Some may benefit greatly from programmer advice. and some are so
difficult to support that it will never be worth the effort to try. If generating reverse code for legacy code we may need hand work to rewrite those parts that use
features of the language that are not conducive to reversibility. For new code we need to advise programmers to avoid certain language constructs that will
preclude automatic generation of reverse code.

10 PDES Course Slides Lecture 12.key - May 5, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Generating reverse code

11

11 PDES Course Slides Lecture 12.key - May 5, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Some basic program fragments and reversing templates

12

Note: the code in the General Assignment row and the E-() column is incorrect. Fixed on a later slide!!

!
S is the global stack onto which all saved data is pushed that is required for rolling back forward execution.!!
For the tests in both the conditional and the while loop, we assume there are no side effects. If there are, then the reverse code can to be easily adjusted. Note that
integer increments / decrements and sequential composition require no data to be stored on the stack S.!!
Throughout these slides we use S.pop() as defined for Stacks in the C++ STL, so that S.pop() does not return the value on the top of the stack, but just deletes it.

12 PDES Course Slides Lecture 12.key - May 5, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Some basic program fragments and reversing templates

13

S is the global stack onto which all saved data is pushed that is required for rolling back forward execution.!!
For the tests in both the conditional and the while-loop, we assume there are no side effects. If there are, then the reverse code can to be easily adjusted.!!
Note that integer addition / subtraction and sequential composition require no data to be stored on the stack S.

13 PDES Course Slides Lecture 12.key - May 5, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Some basic program fragments and reversing templates

14

S is the global stack onto which all saved data is pushed that is required for rolling back forward execution.!!
For the tests in both the conditional and the while loop, we assume there are no side effects. If there are, then the reverse code can to be easily adjusted.!!
Note that integer increments / decrements and sequential composition require no data to be stored on the stack S.

14 PDES Course Slides Lecture 12.key - May 5, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

General approaches to reverse code:
Up front state saving
• Forward: !

• Determine statically what variables might change during execution of the event!
• Push values of all writable state variables onto the stack at beginning of E+(args)!

• Reverse: !
• Pop the stack and restore all state variables in the body of E-() !

• Strengths:!
• restores only initial state, not intermediate states!
• independent of the length of time the event runs!
• stores a variable only once, regardless of how many times it is modified!
• does not require control flow analysis (though it helps)!
• works with some language constructs nearly impossible to handle with other approaches!

• threads!
• exceptions!

• Weaknesses: !
• Time and space overhead proportional to the size of the object state, even if only a small

fraction is changed in one event!
• must save all data that might be modified if you can’t statically demonstrate it will not be

modified, including!
• whole structs, arrays, and collections even if only one element is touched but you don’t know which one!
• any data on the heap reachable by pointer chains that might be modified!

15

15 PDES Course Slides Lecture 12.key - May 5, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Up front
state saving

16

int a,b;!
!
void E() {!
 if (a>b) {!
 int t = a;!
 b++;!
 a = b;!
 b = t;!
 }!
}

!
void E
 S.push(a);!
 S.push(b);!
 if (a>b) {!
 int t = a;!
 b++;!
 a = b;!
 b = t;!
 }!
}

!
void E
 b = S.top();!
 S.pop();!
 a = S.top();!
 S.pop();!
}

!
void E
 S.pop();!
 S.pop();!
}

E()

E+()

E-()

E*()

With up front state saving we identify all of the state variables that might change and push their values on the stack at the beginning of the forward routine. We do
not have to record which branch of the conditional was taken, and if there were a loop in the method body we would not need to record how many times the body
was executed. In this case both state variables do change. But if there were more variables in the state and we could not determine statically that some of them

would not change during execution of E() we would just introduce code in E+() and E-() to save and restore them all. In E-() we simply restore the values of a
and b and pop the stack.. We do not have to pay any attention to the algorithm used in E(). !!
The commit method E*() must also pop any values off the stack that were pushed there by the forward method because the commit method is called if and only if

the reverse method E-() is not called.!!
Note also that variable t here is only a temp. It is not a state variable in the simulation, and hence it does not have to be restored during rollback.

16 PDES Course Slides Lecture 12.key - May 5, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

General approaches to reverse code:
Incremental state saving

• Forward: !
• Push <variable,oldvalue>-pairs onto the entropy stack every time a variable changes

during E+(args). !
• If <variable,*> already appears in the stack, no need to save a second time !

• … but it may cost to much too check that each time!!

• Reverse!
• Pop <variable,oldvalue>-pairs off of the entropy stack one by one, and restore variable

values in reverse order in which they were saved.!
• A variable may be “restored” multiple times if duplicates are not eliminated!

• Strengths:!
• Works well for objects with large states as long as only a small part of the state is modified in

an event, and even if we cannot determine statically know which variables will be modified!

• Works well with arrays and collections when only a small part is modified in an event!

• Works well when variables are modified indirectly through pointers !

• Weaknesses: !
• Time and space overhead is proportional to the time the event method executes!

• Aliasing inhibits the ability to detect that a variable have already been saved unless the
change is stored by address!

• Provides the capability of restoring any intermediate state, not just the initial state — more
than necessary.

17

17 PDES Course Slides Lecture 12.key - May 5, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014 18

int a,b;!
!
void E() {!
 if (a>b) {!
 int t = a;!
 b++;!
 a = b;!
 b = t;!
 }!
}

!
void E
 if (a>b) {!
 int t = a;!
 { S.push(b); b++; }!
 { S.push(a); a = b; }!
 b = t;!
 S.push(1);!
 }!
 else {!
 S.push(0);!
 }!
}

!
void E
 if (S.top()) {!
 S.pop();!
 { a = S.top(); S.pop(); }!
 { b = S.top(); S.pop(); }!
 }!
 else {!
 S.pop();!
 }!
}!

!
void E
 if (S.top()) {!
 S.pop();!
 S.pop();!
 }!
 S.pop();!
}

E()

E+()

E-()

E*()

Incremental
state saving

With Incremental State Saving we instrument the forward routine E+() to save the value of a state variable the very first time it is overwritten or, if we cannot
determine that statically, then we save the value every time it is overwritten that might possibly be the first time. In the forward method E+() we save its value only
the first time if we can because of course in the reverse method we only need to restore it to its initial value. In this example the variable b is overwritten twice, but
we push its value onto the stack only the first time. Of course we also have to push a boolean indicating which branch of the conditional was taken. The reverse

method, E-(), only restores the variable to their original values and pops the stack. !!
The commit method E*() must also pop any values off the stack that were pushed there by the forward method because the commit method is called if and only if

the reverse method E-() is not called.

18 PDES Course Slides Lecture 12.key - May 5, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

General approaches to reverse code:
Path-oriented, regenerative methods

• Forward: !
• Deep control and data flow analysis of the code to determine what parts of the initial

state can be reconstructed from calculations based on the final state.!

• Save only initial data that cannot be reconstructed from data in the final state (deciding
what to save after reverse code has been generated).!

• Reverse!
• Each path through the code considered separately.!

• Reconstruct as much initial data along each path as possible from final state data, and
insert S.push() calls along each path in the forward method for data that cannot be
reconstructed along that path, and corresponding S.pop() calls in the reverse routine.!

• Strengths:!
• In most cases should allow faster forward and reverse code to be generated, with near

minimal data storage.!

• Weaknesses: !
• Number of paths through code is exponential in the number of branches!

• Special methods required for loops

19

19 PDES Course Slides Lecture 12.key - May 5, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Path-oriented,
regenerative

20

int a,b;!
!
void E() {!
 if (a>b) {!
 int t = a;!
 b++;!
 a = b;!
 b = t;!
 }!
}

!
void E
 if (a>b) {!
 int t = a;!
 b++;!
 a = b;!
 b = t;!
 }!
}

!
void E
 if (b > (a-1)) {!
 int t = b;!
 b = a;!
 a = t;!
 b = b - 1;!
 }!
}

!
void E

E()

E+()

E-()

E*()

In this case the path-oriented and regenerative style of reverse code generation manages to produce perfectly reversible code, with nothing pushed onto or popped

from the stack. Not that the forward E+() routine in this case is identical to E() and the commit routine E*() is a no-op. We did not even have to introduce any
additional variables. Perfect reversibility is not usually achievable for a whole event method, but it often is for at least some regions of the code and/or some
variables. It is the ideal of reverse computation.

20 PDES Course Slides Lecture 12.key - May 5, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014 21

int a,b;!
!
void E() {!
 if (a>b) {!
 int t = a;!
 b++;!
 a = b;!
 b = t;!
 }!
}

E() E+()

E-()

E*()

Up front
state saving

Incremental
state saving

Path-oriented
regenerative

Comparison of
all 3 examples

This slide just summarizes the last three examples. The original code for E() is in a box on the left, and three different ways of factoring it into E+(), E-(), and
E
*
() are recorded in the next three columns of the table.!!

The comparison shows that in this particular example, if the condition (a>b) is true, then there is more overhead with incremental state saving then there is with
up front state saving, but if (a>b) is false then the reverse is true. This is not a general statement, however.!!
Also in this case the path-oriented regenerative methods generate perfect reverse code that does not need to save any data on the stack at all. In this case the code it
produces is clearly superior to either of the other methods.

21 PDES Course Slides Lecture 12.key - May 5, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Path-oriented, regenerative inversion

22

This is another example application of Backstroke’s path-oriented regenerative inversion algorithm. The variables a, b, and c are state variables. The forward code
is instrumented in red to keep track of the dynamic path taken, and the reverse code uses path information to restore variable values. Note that the variable path
that is introduced in the forward and reverse methods should be viewed as a bit mask that records for each conditional which branch on the conditional was taken.
In the forward routine the low order bit of path records is 0 if the then-branch of the second conditional is taken, and is a 1 if it is not. The second bit records the
same thing for the first conditional. In the reverse method the corresponding conditionals are reversed in order, so the low order bit indicates which branch to take
in the first conditional, and the second bit indicates which branch to take with the second conditional.!

22 PDES Course Slides Lecture 12.key - May 5, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

End Reprise

23

23 PDES Course Slides Lecture 12.key - May 5, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Function calls

24

24 PDES Course Slides Lecture 12.key - May 5, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Reverse functions:

25

• We can handle function in some cases by inlining, but that is often
not practical.!

• A function call splits the body of E into two regions: before f() and
after f().!

• It requires us to be able to restore an intermediate state, right where
the function was called, not just the initial state.!
• In this case that is the state just after the execution of P+ in E+()!
• This is a contrast between region-based and incremental inversion methods.!
• Up front state saving now must be interpreted as up front of the region, not

just up front of the entire event method!
• Incremental state saving, however, makes this easy.

S is the global stack onto which all saved data is pushed that is required for rolling back forward execution.!!
For the tests in both the conditional and the while loop, we assume there are no side effects. If there are, then the reverse code can to be easily adjusted.!!
Note that integer addition / subtraction and sequential composition require no data to be stored on the stack S.

25 PDES Course Slides Lecture 12.key - May 5, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Saving and restoring
class and struct types

26

26 PDES Course Slides Lecture 12.key - May 5, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Saving and restoring class type objects

27

CT c; // 1!
!
S.push(c); // 2!
c = S.top(); // 3!
S.pop(); // 4

• In saving and restoring class-type data, copies have
to be made and destroyed. C++ has a number of
constructs for this, used in the code on the right:!
• Line 1 invokes the (default) constructor for type CT!
• Line 2 invokes the copy constructor for type CT!
• Line 3 invokes the operator = function for type CT!
• Line 4 invokes the destructor for type CT!

• Their implementations must all work together when
used in saving and restoring class type variables.!
• They must use full deep copies and restores with no

other side effects!
• If pointer types are involved then the copies have to be

fully cycle- and aliasing-aware.!

• Backstroke or other automatic reverse code
generator must either!
• trust that the implementations of these functions have

these properties, or!
• accept a programmer declaration (via pragma) that

they do, or!
• prove that that do, or!
• auto-generate appropriate versions of these four

functions for every class type that has to be saved and
restored.

The semantics of C++ constructors, copy constructors, destructors, and assignment operators all play a fundamental role in the way reverse computation is
implemented when class-type values are involved. We cannot assume that the destructor is the reverse of the constructor, and we cannot assume that they all play
well together and have the properties needed in the general case for reverse computation, namely that full, deep copies are made that are aliasing- and cycle-aware
and that they have no other side effects except those required for perfect copies. !!
In C++ it is also useful in some patterns to create uncopyable or unassignable types, and those simply should not be used as the values of state variables in a
simulation.

27 PDES Course Slides Lecture 12.key - May 5, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Arrays in loops

28

28 PDES Course Slides Lecture 12.key - May 5, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014 29

int A[100000],!
 B[100000];!
!
void E() {!
 int i = 0;!
 while (test(A,B,i)) {!
 A[i] = f(A,B,i);!
 i = g(A,B,i);!
 }!
}

E()

E+()

E-()

E*()

Up atomic saving of
whole array

Elementwise state saving
of array elementsHandling

arrays

In this example the A and B arrays are state variables, but i is not. And the functions test, f, and g are side-effect free. !!
For the purposes of exposition on this slide we have assumed the existence of methods S.pushArray(A), topArray(A), and S.popArray() that do for array
arguments the same things as S.push(n), S.top(), and S.pop() do for integer arguments.!!
This exemplifies the tradeoffs that come with handling arrays and other collections. If the while-loop is executed only a few times, then it is much faster to do
elementwise saving of the few elements of the array that are overwritten and restore them one at a time in case of rollback than to save and restore the entire
100,000-element array. But if the loop is executed many times, and many elements of the array are overwritten, then it is faster to simply save the entire array as an
atomic data structure and restore the same way on rollback.!!
But we may not be able to determine statically which of those is the case, which leaves the reverse code generator in a quandary. Which kind of reverse code should
it generate? One approach is to allow the programmer to offer advice in the form of a pragma or specially formatted comment indicating which choice to use.
Another approach is illustrated on the next slide.

29 PDES Course Slides Lecture 12.key - May 5, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014 30

int A[100000],!
 B[100000];!
!
void E() {!
 int i = 0;!
 while (test(A,B,i)) {!
 A[i] = f(A,B,i);!
 i = g(A,B,i);!
 }!
}

E()

E+() E-()

Start with elementwise saving of array elements; abandon
it in favor of atomic array saving if a threshold reachedHandling

arrays

Corrections to this slide by
Markus Schordan!

Multiple corrections on this slide thanks to Markus Schordan.!!
In this example the A and B arrays are state variables, but i is not. The functions th, test, f, and g are all side-effect free. The function S.pushArray(A) is
intended to push the entire array A onto the stack, even though this is not strictly correct C++; likewise S.topArray(A) is intended to copy the entire array value
from the top of the stack into A. S.popArray() just pops off the entire array.!!
Here we do something sophisticated. We do not decide decide statically whether to use elementwise or atomic saving of array A. Instead, we make some measurements
at runtime and decide then. Whether this method will prove practical or not (i.e. whether we can automatically generate code like this) is an open research question,
but this example illustrates the depth and complexity of the options we have in generating good forward and reverse code.!!
In the forward method E+() we don’t know how many times the loop will be executed, and so we start out assuming that we will be doing incremental saving of
array elements as they are modified, keeping count of the number of loop executions and also pushing array elements onto stack S as they are modified. But after a
certain threshold number of elements have been pushed onto the stack, it becomes probable the loop will cycle many times and that a large fraction of all of the
array elements will be modified. At that point we abandon elementwise and pop everything off of the stack that we pushed onto it. We then start over, pushing the
entire array A onto the stack all at once. If, at the end of the loop, we did not abandon elementwise saving of array A, then we push the loop count ct on the stack to

prepare for elementwise restoration. Either way, the last thing we push on the stack is the boolean elementwise to tell the reverse method E-() which mechanism
to use to restore A.!!

30 PDES Course Slides Lecture 12.key - May 5, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Storage allocation and
deallocation

31

31 PDES Course Slides Lecture 12.key - May 5, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Allocation

32

32 PDES Course Slides Lecture 12.key - May 5, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Dynamic storage allocation: Naïve attempt

33

Note: this information on this slide is WRONG, as revealed in subsequent slides.!!
The temptation here is to believe that delete() is the proper reverse for new. It isn’t.

33 PDES Course Slides Lecture 12.key - May 5, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Dynamic storage allocation: Naïve attempt

34

Problem: !
• new invokes the constructor for T!
• delete invokes destructor for T!
• … but the destructor may not be the perfect reverse of the

constructor

Note: this information on this slide is WRONG, as revealed in subsequent slides.

34 PDES Course Slides Lecture 12.key - May 5, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Dynamic storage allocation: Correct version

35

Calling new T in the forward method is OK. But we must realize that this invokes a constructor for type T in C++, (which in turn invokes a whole hierarchy of other
constructors for members in tyre and parent types, all called in canonical order). The problem with treating delete() as its reverse is that delete() calls the
destructor for the type of data being deleted, but the destructor is not generally the reverse of the constructor! In general, programmer-defined constructors can have
arbitrary side-effects on other variables, which may or may not be exactly reversed by the matching destructor. What we need is for each constructor to have a

reverse constructor for T, which we denote here by T_constructor-(). We call that first, and the use the obscure C++ construct operator delete() to finally
free the storage allocated by new. In C++ operator delete() does not call a destructor.

35 PDES Course Slides Lecture 12.key - May 5, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Deallocation

36

36 PDES Course Slides Lecture 12.key - May 5, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Dynamic storage deallocation: Naïve attempt

37

Note: this information on this slide is WRONG, as revealed in subsequent slides.!!
Here we recognize that the delete() primitive is fundamentally irreversible, so we delay it to the commute routine E*().!!
Note that in E-() we use push-() as the reverse of push. In the C++ STL there does not happen to be a primitive to remove an entry added to the back of a

Queue, so we presume that the code for Queue has been run through Backstroke to create push-() (or that someone wrote it by hand).

37 PDES Course Slides Lecture 12.key - May 5, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Dynamic storage deallocation: Naïve attempt

38

Problem:!
• delete invokes the destructor, and that should be called in E+ because
R may depend on it!

• Thus, the reverse destructor also has to be called in the E-

Note: the information on this slide is WRONG, as revealed in subsequent slides.

38 PDES Course Slides Lecture 12.key - May 5, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Dynamic storage deallocation

39

As with new, a similar problem arises in reversing delete() in that delete() invokes the destructor for the type of object being destroyed. We need to invoke
that destructor in the forward routine, because the side effects of the destructor on other variables can be felt in subsequent statements (R). However, we need to
run not the original destructor, tptr->T_destruct(), but its forward instrumented version, tptr->T_destruct+(). And we need to be able to reverse the

effects of tptr->T_destruct+() in the E-() by calling tptr->T_destruct-(). But while we have to reverse the effects of the destructor in E-(), we

cannot really free the storage associated with the object in the E-() routine, because if we do the storage could be re-allocated and overwritten, and the

overwriting would make it impossible for us to reverse the action in E-(). So we delay the actual freeing of the storage until the commit routine, and then we do it
using the operator delete() construct.

39 PDES Course Slides Lecture 12.key - May 5, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Output

40

40 PDES Course Slides Lecture 12.key - May 5, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Output

41

• Both file and the value of expr must be pushed into the
stack by value!

• If expr evaluates to an array, the entire array must be pushed
onto the stack!

• If expr evaluates to a struct, or class type, fully deep copies
are required using an appropriate, perhaps non-default copy
constructor.

Note: expr is a side-effect free expression. When we push data onto the queue Q for processing at commit time, we must push values, not expressions to be
evaluated.!

41 PDES Course Slides Lecture 12.key - May 5, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

End

42

42 PDES Course Slides Lecture 12.key - May 5, 2014

